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Abstract

Bleher and Kuijlaars recently showed that the eigenvalue correlations from matrix ensembles with
external source can be expressed by means of a kernel built out of special multiple orthogonal poly-
nomials. We derive a Christoffel–Darboux formula for this kernel for general multiple orthogonal
polynomials. In addition, we show that the formula can be written in terms of the solution of the
Riemann–Hilbert problem for multiple orthogonal polynomials, which will be useful for asymptotic
analysis.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Multiple orthogonal polynomials are polynomials that satisfy orthogonal conditions with
respect to a number of weights, or more general with respect to a number of measures. Such
polynomialswerefirst introducedbyHermite inhis proof of the transcendenceofe, andwere
subsequently used in number theory and approximation theory, see e.g.[1,2,9,10,12], and
the references cited therein. The motivation for the present work comes from a connection
with random matrix theory. In the random matrix model considered in[3] the eigenvalue
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correlations are expressed in terms of a kernel built out of multiple orthogonal polynomials
with respect to two weights

wj(x) = e−V (x)+aj x, j = 1,2, a1 �= a2. (1.1)

A Christoffel–Darboux formula was given in[3] which leads to a description of the kernel
in terms of the Riemann–Hilbert problem for multiple orthogonal polynomials[14]. It is
the aim of this paper to extend the Christoffel–Darboux formula to multiple orthogonal
polynomials with respect to an arbitrary number of weights. We also allow more general
weights than those in (1.1).
Letm�2 be an integer, and letw1, w2, . . . , wm be non-negative functions onR such that

all moments
∫ ∞
−∞ xkwj (x) dx exist. Let�n = (n1, n2, . . . , nm) be a vector of non-negative

integers. The (monic) multiple orthogonal polynomialP�n of type II is a monic polynomial
of degree|�n| satisfying

∫
P�n(x)xkwj (x) dx = 0 for k = 0, . . . , nj − 1, j = 1, . . . , m. (1.2)

Here we define, as usual,|�n| = n1 + n2 + · · · + nm.
We assume that the system is perfect, i.e., that for every�n ∈ (N ∪ {0})m, the polynomial

P�n exists and is unique, see[9]. This is for example the case when the weights form an
Angelesco system or anAT system, see e.g.[13]. However, see Remark 1.3 for a relaxation
of the perfectness assumption.
The multiple orthogonal polynomials of type I are polynomialsA

(k)

�n for k = 1, . . . , m,

whereA(k)

�n has degree�nk − 1, such that the function

Q�n(x) =
m∑

k=1

A
(k)

�n (x)wk(x) (1.3)

satisfies

∫
xjQ�n(x) dx =



0 for j = 0, . . . , |�n| − 2,

1 for j = |�n| − 1.
(1.4)

The polynomialsA(k)

�n exist, are unique, and they have full degree

degA
(k)

�n = nk − 1,

since the system is perfect.
The usual monic orthogonal polynomialsPn on the real line with weight functionw(x)

satisfy a three term recurrence relation and this gives rise to the basic Christoffel–Darboux
formula

n−1∑
j=0

1

hj

Pj (x)Pj (y) = 1

hn−1

Pn(x)Pn−1(y) − Pn−1(x)Pn(y)

x − y
, (1.5)
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where

hj =
∫

Pj (x)x
jw(x) dx.

In order to generalize the formula (1.5) to multiple orthogonal polynomials, we consider
a sequence of multi-indices�n0, �n1, . . . , �nn such that for eachj = 0, 1, . . . , n,

|�nj | = j, �nj+1� �nj , (1.6)

where the inequality is taken componentwise. This means that we can go from�nj to �nj+1
by increasing one of the components of�nj by 1. We view�n0, �n1, . . . , �nn as a path from
�n0 = �0 (the all-zero vector) to an arbitrary multi-index�n = �nn. This path will be fixed and
all notions are related to this fixed path. Given such a path, we define the polynomialsPj

and functionsQj (with single index) as

Pj = P�nj
, Qj = Q�nj+1. (1.7)

Our aim is to find a simplified expression for the sum

Kn(x, y) =
n−1∑
j=0

Pj (x)Qj (y). (1.8)

To do this, we introduce the following notation.We define for everymulti-index�n and every
k = 1, . . . , m,

h
(k)

�n =
∫

P�n(x)xnkwk(x) dx. (1.9)

The numbersh(k)

�n are non-zero, since the system is perfect. We also use the standard basis
vectors

�ek = (0, . . . ,0, 1,0, . . . ,0), where 1 is in thekth position. (1.10)

Our result is the following.

Theorem 1.1. Letn ∈ N and let�n0, �n1, . . . , �nn be multi-indices such that(1.6)holds.Let
Pj andQj be as in(1.7).Then we have if�n = �nn,

(x − y)

n−1∑
j=0

Pj (x)Qj (y) = P�n(x)Q�n(y) −
m∑

k=1

h
(k)

�n
h
(k)

�n−�ek
P�n−�ek (x)Q�n+�ek (y). (1.11)

It is easy to see that (1.11) reduces to the classical Christoffel–Darboux formula (1.5) in
casem = 1. Form = 2 the formula was proven in[3].

Remark 1.2. It follows from (1.11) that the kernel (1.8) only depends on the endpoint�n of
the chosen path from�0 to �n and not on the particular path itself, since clearly the right-hand
side of (1.11) only depends on�n.
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This fact can be deduced from the fact that for any multi-index�k and fori �= j , we have

P�k(x)Q�k+ �ei (y) + P�k+�ei (x)Q�k+�ei+�ej (y)
= P�k(x)Q�k+�ej (y) + P�k+�ej (x)Q�k+�ei+�ej (y). (1.12)

The relation (1.12) follows easily from Lemma3.6below.

Remark 1.3. For conveniencewe have assumed that the system is perfect, so that all multi-
indices�n are normal. (A multi-index is normal ifP�n exists and is unique.) This assumption
is not really necessary. A closer inspection of the proof of Theorem1.1in Section 3 reveals
that, besides the normality of the multi-indices�nj , for j = 0, . . . , n, and �n ± �ek, for
k = 1, . . . , m, which appear in the statement of the theorem, we only use the normality of
the multi-indices

�n + �e1 + �e2 + · · · + �ek, k = 2, . . . , m

and

�n + �e1 + �e2 + · · · + �ek + �ej , k = 1, . . . , m− 2, j = k + 2, . . . , m.

It might be possible to weaken the normality assumption even further, but we have not
tried to do so.

Remark 1.4. In [11], Sorokin andVan Iseghem proved a Christoffel–Darboux formula for
vector polynomials that havematrix orthogonality properties.As a special case this includes
themultipleorthogonalpolynomialsof type Iand type II,whenoneof thevectorpolynomials
has only one component. In this special case, their Christoffel–Darboux formula comes
down to the formula

(x − y)

n−1∑
j=0

Pj (x)Qj (y) = Pn(x)Qn−1(y) −
n+m−1∑
k=n

n−1∑
j=0

cj,kPj (x)Qk(y) (1.13)

where the constantscj,k are such that

xPk(x) =
k+1∑
j=0

cj,kPj (x),

see also (3.5) below. In the setting of[11] it holds thatcj,k = 0 if k�j + m + 1, so that
the right-hand side of (1.13) has 1+ 1

2m(m + 1) terms. Note that in our formula (1.11) the
right-hand side has only 1+ m terms.
Another Christoffel–Darboux formula for multiple orthogonal polynomials similar to the

one in[11] has been given recently in[6].

Remark 1.5. As mentioned before, the formula (1.11) is useful in the theory of random
matrices. Brézin and Hikami[5] studied a randommatrix model with external source given
by the probability measure

1

Zn

e−T r(V (M)−AM) dM (1.14)
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defined on the space ofn× n Hermitian matricesM. Here we have thatV (x) = 1
2x

2,A is a
fixedHermitianmatrix (the external source), andZn is a normalizing constant. For this case,
we can writeM = H +A, whereH is a randommatrix from the Gaussian unitary ensemble
andA is deterministic. Zinn–Justin[15] considered the case of an arbitrary polynomialV.
Thek-point correlation functionRk(�1, . . . , �k) of the (random) eigenvalues of a matrix

from theensemble (1.14) canbeexpressedasak×k determinant involvingakernelKn(x, y)

Rk(�1, . . . , �k) = det(Kn(�i , �j ))1� i,j �k, (1.15)

see[15]. Suppose that the external sourceA hasm distinct eigenvalues�1, . . . , �m with
respective multiplicitiesn1, . . . , nm. Let �n = (n1, . . . , nm). Then it was shown in[3] that
the kernelKn has the form (1.8) built out of themultiple orthogonal polynomials associated
with the weights

wj(x) = e−(V (x)−�j x), j = 1, . . . , m.

The Christoffel–Darboux formula (1.11) gives a compact expression for the kernel.

There is another expression for the kernel (1.8) in terms of the solution of a Riemann–
Hilbert problem. This will be especially useful for the asymptotic analysis of the matrix
model (1.14).Wewill discuss this in the next section. The proof of Theorem1.1is presented
in Section3.

2. Link with the Riemann–Hilbert problem

Van Assche et al.[14] found a Riemann–Hilbert problem that characterizes the mul-
tiple orthogonal polynomials. This is an extension of the Riemann–Hilbert problem for
orthogonal polynomials due to Fokas et al.[8]. We seekY : C \ R → C(m+1)×(m+1) such
that
1. Y is analytic onC \ R,
2. for x ∈ R, we have Y+(x) = Y−(x)S(x), where

S(x) =




1 w1(x) w2(x) · · · wm(x)

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1




, (2.1)

3. asz → ∞, we have that

Y (z) =
(
I + O

(
1

z

))



zn 0 0 · · · 0
0 z−n1 0 · · · 0
0 0 z−n2 · · · 0
...

...
...

. . .
...

0 0 0 · · · z−nm




, (2.2)

whereI denotes the(m + 1)× (m + 1) identity matrix.
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This Riemann–Hilbert problem has a unique solution given by:

Y (z) =




P�n(z) �R�n(z)
c1P�n− �e1(z) c1 �R�n−�e1(z)
c2P�n−�e2(z) c2 �R�n−�e2(z)

...
...

cmP�n−�em(z) cm �R�n−�em(z)




, (2.3)

whereP�n(z) is the multiple orthogonal polynomial of type II with respect to the weights
w1, . . . , wm and �R�n = (R�n,1, R�n,2, . . . , R�n,m) is the vector containing the Cauchy trans-
forms

R�n,j (z) = 1

2�i

∫
P�n(x)wj (x)

x − z
dx

and

cj = − 2�i

h
(j)

�n−�ej
, j = 1, . . . , m. (2.4)

VanAsscheetal.[14]alsogaveaRiemann–Hilbert problem that characterizes themultiple
orthogonal polynomials of type I. Here we seekX : C \ R → C(m+1)×(m+1) such that
1. X is analytic onC \ R,
2. for x ∈ R, we have X+(x) = X−(x)U(x), where

U(x) =




1 0 0 · · · 0
−w1(x) 1 0 · · · 0
−w2(x) 0 1 · · · 0

...
...

...
. . .

...

−wm(x) 0 0 · · · 1




, (2.5)

3. asz → ∞, we have

X(z) =
(
I + O

(
1

z

))



z−n 0 0 · · · 0
0 zn1 0 · · · 0
0 0 zn2 · · · 0
...

...
...

. . .
...

0 0 0 · · · znm




. (2.6)

This Riemann–Hilbert problem also has a unique solution and it is given by

X(z) =




∫
Q�n(x) dx

z−x
2�i �A�n(z)

k1
1
2�i

∫
Q�n+�e1(x) dx

z−x
k1 �A�n+�e1(z)

k2
1
2�i

∫
Q�n+�e2(x) dx

z−x
k2 �A�n+�e2(z)

...
...

km
1
2�i

∫
Q�n+�em(x) dx

z−x
km �A�n+�em(z)




, (2.7)
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where �A�n = (A
(1)
�n , A

(2)
�n , . . . , A

(m)

�n ) is the vector of multiple orthogonal polynomials of

type I with respect tow1, . . . , wm,Q�n(z) = ∑m
k=1A

(k)

�n (x)wk(x) and

kj = h
(j)

�n , j = 1, . . . , m. (2.8)

It is now possible to write the kernelKn(x, y) in terms of the solutions of the two
Riemann–Hilbert problems, see also[3]. First, we observe thatX = Y−t . If we look at the
j + 1,1-entry of the productY−1(y)Y (x) = Xt(y)Y (x), wherej = 1, . . . , m, then we
find by (2.3) and (2.7)

[Y−1(y)Y (x)]j+1,1=
[
2�iA(j)

�n (y) k1A
(j)

�n+�e1(y) · · · kmA
(j)

�n+�em(y)
]



P�n(x)
c1P�n− �e1(x)
c2P�n− �e2(x)

...

cmP�n− �em(x)




= 2�i


P�n(x)A(j)

�n (y) −
m∑

k=1

h
(k)

�n
h
(k)

�n−�ek
P�n−�ek (x)A

(j)

�n+�ek (y)


 . (2.9)

where in the last step we used the expressions (2.4) and (2.8) for the constantscj andkj .
Multiplying (2.9) by wj(y), dividing by 2�i, and summing overj = 1, . . . , m, we obtain
the right-hand side of (1.11). Therefore we see that

(x − y)Kn(x, y) = 1

2�i

m∑
j=1

wj(y)[Y−1(y)Y (x)]j+1,1

= 1

2�i

[
0 w1(y) · · · wm(y)

]
Y−1(y)Y (x)



1
0
...

0


 . (2.10)

It is clear that the right-hand side of (2.10) is 0 for x= y, which is not obvious at all for
the right-hand side of (1.11).
In [4] the Riemann–Hilbert problem (2.1) and (2.2) is analyzed in the limitn → ∞ for

the special case ofm = 2, n1 = n2, and weights

w1(x) = e−n( 12x
2−ax), w2(x) = e−n( 12x

2+ax).

The corresponding multiple orthogonal polynomials are known as multiple Hermite poly-
nomials[2,13]. The Deift/Zhou steepest descent method for Riemann–Hilbert problems
can be applied to the asymptotic analysis of (2.1) and (2.2), see[7] and references cited
therein.

3. Proof of Theorem1.1

For the proof we are going to extend the path�n0, �n1, . . . , �nn by defining

�nn+k − �nn+k−1 = �ek, k = 1,2, . . . , m. (3.1)
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We will also extend the definition (1.7) by puttingPj = P�nj
andQj−1 = Q�nj

for j =
n + 1, . . . , n+ m.

3.1. Biorthogonality and recurrence relations

The multiple orthogonal polynomials satisfy a biorthogonality relation.

Lemma 3.1.We have∫
Pk(x)Qj (x) dx = �j,k,

where�j,k is the Kronecker delta.

Proof. This is immediate from the definitions (1.7), the orthogonality conditions (1.4) of
the functionQj and (1.2) of the polynomialPk and the fact thatPk is a monic polynomial.

�
BecausexPk(x) is a polynomial of degreek + 1, we can expandxPk(x) as

xPk(x) =
k+1∑
j=0

cj,kPj (x). (3.2)

The coefficients can be calculated by Lemma3.1 by multiplying both sides of (3.2) with
Qj(x) and integrating over the real line. That gives us

cj,k =
∫

xPk(x)Qj (x) dx. (3.3)

The coefficientscj,k are 0 if j�k + 2.
Becauseof (3.1)wecanwriteyQj (y)with j �n−1asa linear combinationofQ0, . . . ,Qn+m−1

and we have by Lemma3.1

yQj (y) =
n+m−1∑
k=0

cj,kQk(y) for j = 0, . . . , n − 1. (3.4)

Using the expansions (3.2) and (3.4) forxPk(x) andyQj (y) we can write

(x − y)

n−1∑
k=0

Pk(x)Qk(y) =
n−1∑
k=0

xPk(x)Qk(y) −
n−1∑
k=0

Pk(x)yQk(y)

=
n−1∑
k=0

k+1∑
j=0

cj,kPj (x)Qk(y) −
n−1∑
k=0

n+m−1∑
j=0

ck,jPk(x)Qj (y).

A lot of terms cancel. Sincecj,k = 0 for j �k + 2, andcn,n−1 = 1, what remains is

(x − y)

n−1∑
k=0

Pk(x)Qk(y) = P�n(x)Q�n(y) −
n+m−1∑
k=n

n−1∑
j=0

cj,kPj (x)Qk(y). (3.5)
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We also used the fact thatPn = P�n andQn−1 = Q�n. Note that (3.5) corresponds to the
Christoffel–Darboux formula of[11], as mentioned in the introduction.
In the rest of the proof we are going to show that

n+m−1∑
k=n

n−1∑
j=0

cj,kPj (x)Qk(y) =
m∑

k=1

h
(k)

�n
h
(k)

�n−�ek
P�n−�ek (x)Q�n+�ek (y) (3.6)

so that (3.5) then leads to our desired formula (1.11).

3.2. The vector space generated by the polynomialsP�n−�e1, . . . , P�n−�em

For fixed y, the right-hand side of (3.6) belongs to the vector space spanned by the
polynomials ofP�n−�e1, . . . , P�n−�em . In this part of the proof, we characterize this vector
space and show that the left-hand side of (3.6) also belongs to this vector spaceV.

Lemma 3.2. The polynomialsP�n−�e1, . . . , P�n−�em are a basis of the vector space V of all
polynomials� of degree�n − 1 satisfying∫

�(x)xiwj (x) dx = 0, i = 0, . . . , nj − 2, j = 1, . . . , m. (3.7)

Proof. By the orthogonality properties (1.2) of the polynomialsP�n−�ei for i = 1, . . . , m,
it is obvious that they belong toV. We are first going to show that the polynomialsP�n−�ei
are linearly independent. Suppose that

a1P�n−�e1 + a2P�n−�e2 + · · · + amP�n−�em = 0 (3.8)

for some coefficientsaj . Multiplying (3.8) withwj(x)x
nj−1, and integrating over the real

line, we obtainajh
(j)

�n−�ej = 0. Sinceh(j)

�n−�ej �= 0, we getaj = 0 for j = 1, . . . , m, which
shows that the polynomials are linearly independent.
Suppose next that� belongs toV. Put

bj = 1

h
(j)

�n−�ej

∫
�(x)xnj−1wj(x) dx

and define the polynomial�1 by

�1 = b1P�n−�e1 + b2P�n−�e2 + · · · + bmP�n−�em. (3.9)

Then�1 − � belongs toV and∫
(�1(x) − �(x)) xnj−1wj(x) dx = 0, j = 1, . . . , m. (3.10)

This means that�1 − � satisfies the conditions∫
(�1(x) − �(x))xiwj (x) dx = 0, i = 0, . . . , nj − 1, j = 1, . . . , m. (3.11)
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Because�1−� is a polynomial of degree�n−1 and the system is perfect, it follows from
(3.11) that�1 − � = 0. Therefore� = �1, and� can be written as a linear combination of
the polynomialsP�n−�e1, . . . , P�n−�em . �
The lemma follows.

Lemma 3.3. For everyk = n, . . . , n + m − 1,we have that the polynomial

�k(x) =
n−1∑
j=0

cj,kPj (x) (3.12)

belongs to the vector space V.

Proof. Clearly�k is a polynomial of degreen − 1. Using (3.2) we see that

�k(x) = xPk(x) −
k+1∑
j=n

cj,kPj (x). (3.13)

The representation (3.13) of�k and the orthogonality conditions (1.2) show that�k satisfies
the relations (3.7), so that�k belongs toV by Lemma3.2. �
Because of Lemma3.3, the left-hand side of (3.6) belongs toV for everyy, and so by

Lemma3.2, we can write

n+m−1∑
k=n

n−1∑
j=0

cj,kPj (x)Qk(y) =
m∑

j=1

�j (y)P�n−�ej (x) (3.14)

for certain functions�j (y). The next lemma gives an expression for�j .We use the notation

�s0 = �0 (all-zero vector) and

�sj =
j∑

k=1

�ek, j = 1, . . . , m.

Lemma 3.4.We have forj = 1, . . . , m,

h
(j)

�n−�ej �j (y) =
j∑

i=1

h
(j)

�n+�si−1
Q�n+�si (y). (3.15)

Proof. Rewriting the left-hand side of (3.14) using (3.12) and (3.13) we obtain

m∑
j=1

�j (y)P�n−�ej (x) =
n+m−1∑
k=n

xPk(x)Qk(y) −
n+m−1∑
k=n

k+1∑
j=n

cj,kPj (x)Qk(y). (3.16)

Nowmultiply (3.16) withxnj−1wj(x) and integrate with respect tox. Then the left-hand
side gives

h
(j)

�n−�ej �j (y). (3.17)
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The second sum in the right-hand side of (3.16) gives no contribution to the integral because
of orthogonality, and the first sum gives

n+m−1∑
k=n

(∫
Pk(x)x

nj wj (x) dx

)
Qk(y)

=
m∑

i=1

(∫
Pn+i−1(x)x

nj wj (x) dx

)
Qn+i−1(y). (3.18)

Because of the choice (3.1) and the definition (1.7) we have

Pn+i−1 = P�n+�si−1, Qn+i−1 = Q�n+�si i = 1, . . . , m.

Thenwe see that the integral in the right-hand side of (3.18) is zero ifi�j +1 and otherwise
it is equal toh(j)

�n+�si−1
. Then (3.15) follows. �

3.3. Completion of the proof of Theorem1.1

In view of (3.14) and (3.15) it remains to prove that

h
(j)

�n Q�n+�ej (y) =
j∑

i=1

h
(j)

�n+�si−1
Q�n+�si (y) (3.19)

for j = 1, . . . , m, and then (3.6) follows.
To establish (3.19) we need some properties of the numbersh

(j)

�n and relations between

Q-functions with different multi-indices. We already noted thath
(j)

�n �= 0. We express the

leading coefficients of the polynomialsA(j)

�n in terms of these numbers.

Lemma 3.5. The leading coefficient ofA(j)

�n+�ej is equal to
1

h
(j)

�n
.

Proof. Because of the orthogonality conditions (1.2) and (1.4) we have that

1=
∫

P�n(x)Q�n+�ej (x) dx

=
∫

P�n(x)A(j)

�n+�ej (x)wj (x) dx

= (leading coefficient ofA(j)

�n+�ej )
∫

P�n(x)xnj wj (x) dx

= (leading coefficient ofA(j)

�n+�ej )h
(j)

�n
and the lemma follows. �

Lemma 3.6. Let j �= k. Then we have for every multi-index�n that

P�n(x) = h
(k)

�n
h
(k)

�n+�ej
(P�n+�ej − P�n+�ek ) = − h

(j)

�n
h
(j)

�n+�ek
(P�n+�ej − P�n+�ek ) (3.20)
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and

Q�n =
h
(k)

�n−�ej−�ek
h
(k)

�n−�ek
(Q�n−�ej − Q�n−�ek ) = −

h
(j)

�n−�ej−�ek
h
(j)

�n−�ej
(Q�n−�ej − Q�n−�ek ). (3.21)

Proof. We know thatP�n is a polynomial of degree|�n| that satisfies the orthogonality
conditions (1.2). It is easy to see thatP�n+�ej − P�n+�ek is a polynomial of degree|�n| that
satisfies these same conditions. Because the system is perfect, we then have that

�P�n(x) = P�n+�ej (x) − P�n+ �ek (x), (3.22)

for some� ∈ R. Multiplying (3.22) withxnkwk(x) and integrating over the real line, we
find that

�h(k)

�n = h
(k)

�n+ �ej − 0 = h
(k)

�n+ �ej .

This proves the first equality of (3.20). The second equality follows by interchangingj and
k.
Next we show (3.21). It is easy to see thatQ�n−�ej −Q�n−�ek satisfies the same orthogonality

conditions (1.4) asQ�n. Since the degrees of the polynomialsA
(i)

�n−�ej −A
(i)

�n−�ek do not exceed

the degrees ofA(i)

�n for i = 1, . . . , m, it follows that

�Q�n = Q�n−�ej − Q�n−�ek , (3.23)

for some� ∈ R. To compute�, we are going to compare the leading coefficients of the
polynomials that come withwk(x). Using Lemma3.5, we find that

�
1

h
(k)

�n−�ek
= 1

h
(k)

�n−�ej−�ek
− 0 = 1

h
(k)

�n−�ej−�ek
.

This proves the first equality of (3.21). The second equality follows by interchangingj
andk. �

Now we are ready to complete the proof of Theorem1.1.

Proof of Theorem1.1
In view of what was said before, it suffices to prove (3.19). Fixj = 1, . . . , m. We are

going to prove by induction that fork = 0, . . . , j − 1,

h
(j)

�n Q�n+�ej =
k∑

i=1

h
(j)

�n+�si−1
Q�n+�si + h

(j)

�n+�skQ�n+�sk+�ej . (3.24)

For k = 0, the sum in the right-hand side of (3.24) is an empty sum, and then the equality
(3.24) is clear.
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Suppose that (3.24) holds for somek�j − 2. Taking (3.21) with�n + �sk+1 + �ej instead
of �n andk + 1 instead ofk, we get

Q�n+�sk+1+�ej = − h
(j)

�n+�sk
h
(j)

�n+�sk+1

(Q�n+�sk+1 − Q�n+�sk+�ej ).

Thus

h
(j)

�n+�skQ�n+�sk+�ej = h
(j)

�n+�skQ�n+�sk+1 + h
(j)

�n+�sk+1
Q�n+�sk+1+�ej (3.25)

and using the induction hypothesis (3.24) we obtain (3.24) withk replaced byk + 1.
So (3.24) holds for everyk = 0, 1, . . . , j − 1. Takingk = j − 1 in (3.24), we obtain

(3.19) and this completes the proof of Theorem1.1. �
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